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Abstract. We show that considerable orbital magnetic moments and magneto-crystalline anisotropy ener-
gies are obtained for a Fe monatomic wire described in a tight-binding method with intra-atomic electronic
interactions treated in a full Hartree Fock (HF) decoupling scheme. Even though the use of the orbital
polarization ansatz with simplified Hamiltonians leads to fairly good results when the spin magnetization
is saturated this is not the case of unsaturated systems. We conclude that the full HF scheme is necessary
to investigate low dimensional systems.

PACS. 75.30.Gw Magnetic anisotropy – 75.75.+a Magnetic properties of nanostructures – 75.90.+w Other
topics in magnetic properties and materials

In the bulk of ferromagnetic transition metals it is
well-known that the orbital magnetic moment L is
quenched and that the magneto-crystalline anisotropy en-
ergy (MAE) is very small as a result of crystal field and
strong electron delocalization. In nano-objects the dimen-
sionality or coordination is reduced so that the influence of
intra-atomic Coulomb interactions, responsible for Hund’s
rules in the free atom, becomes more and more important
and both the spin and orbital magnetic moments increase
dramatically. This is seen in experiments on chains of Co
atoms at step edges of Pt(997) [1] and Co single atoms or
nanoparticles deposited on Pt(111) in which orbital mo-
ments as large as 1.1 µB per atom have been measured [2],
associated with a considerable enhancement of the MAE.

On the theoretical side, in the Local Spin Density Ap-
proximation (LSDA) or in simplified tight-binding (TB)
Hartree-Fock (HF) schemes where the intra-atomic ma-
trix elements of the Coulomb interaction are averaged,
the distribution of electrons between the orbital states
of opposite magnetic quantum numbers m is poorly de-
scribed, especially in low dimensional systems. As a result
these approximations yield underestimated values of L,
even though these values increase when the dimension-
ality is lowered [3]. Eriksson et al. [4] have proposed to
correct for this effect by adding a term proportional to
−̂L2/2 in the Hamiltonian, treated in mean-field, which
will be referred to as Orbital Polarization Ansatz (OPA)
in the following. The effect of this term is obviously to in-

a e-mail: cyrille.barreteau@cea.fr

crease 〈̂L〉 [5]. A more rigorous way of obtaining both the
spin and orbital moments is to solve the HF equations by
taking into account all intra-atomic terms in the decou-
pling with all matrix elements of the Coulomb interaction
Uγ1γ2γ3γ4 = 〈γ1(r), γ2(r′)| e2

|r−r′| |γ3(r), γ4(r′)〉, where γi

are atomic orbitals, expressed in terms of three Racah
parameters A, B and C, for d electrons [6] in a system
of homonuclear atoms. Starting from this Hamiltonian
Solovyev et al. [7] have shown, in an elegant work, that
the OPA cannot be derived analytically from the HF
Hamiltonian except in some very special cases and that,
even in the latter, the proportionality factor is not B as
usually assumed but 3B/2. Very recently Nicolas et al. [8]
have discussed the effect of orbital polarization, using ei-
ther a Stoner-like TB Hamiltonian with the OPA or an
HF Hamiltonian in which the one and two orbital matrix
elements of the Coulomb interaction are treated exactly in
the spherical harmonics (SH) basis but three and four or-
bital terms are neglected. These latter terms depend both
on B and C in the SH basis which results in a symmetry
breaking that they claim to overcome by averaging over
different orbital basis. On the opposite, a recent work by
Xiangang Wan et al. [9] is based on a complete HF decou-
pling. However their effective intra-atomic potential (see
Eq. (4) of their work) is the same as in LSDA+U while the
TB part of their total Hamiltonian is not spin polarized.
As a result when the approximations leading to the Stoner
model are carried out in their equation (4), it does not lead
to the correct Stoner parameter. Finally, Shick et al. [10]
have shown that a better agreement with experiment is
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obtained for a monatomic Cobalt wire at a Pt(111) sur-
face step edge when the rotationally invariant LSDA+U
method of reference [11] is used instead of LSDA.

It is thus of fundamental importance to investigate
not only the ability of the full HF scheme to predict
large L and MAE in nano-objects, but also to check
whether the OPA can account for these effects. In this
paper we compare, on the simple model of a monatomic
wire, the results given by the full HF decoupling and
two currently used simplified Hamiltonians corrected or
not by the OPA term. We use a TB model in a mini-
mal orthogonal basis set of d valence orbitals |i, γ, σ〉 =
|i, γ〉 ⊗ |σ〉, of spin σ and orbital γ centered at site i. In
the following γ will either denote cubic harmonics (CH)
(γ = λ = dxy, dyz, dzx, dx2−y2 , d3z2−r2) or spherical har-
monics (γ = m = −2,−1, 0, 1, 2). Our Hamiltonian H
can be expressed as the sum of a standard one-body TB
Hamiltonian H0 (determined by the bare d level ε0, and
hopping integrals) and an electron-electron interaction
Hamiltonian Hint in which only on-site electron-electron
interactions are considered. The standard Hartree Fock
decoupling leads to the one-electron Hamiltonian (denoted
as HF1) which, in the second quantization formalism can
be written

HHF1
int =

∑

iγ1γ2γ3γ4
σσ′

(

Uγ4γ2γ3γ1〈c†iγ4σciγ3σ〉c†iγ2σ′ciγ1σ′

− Uγ4γ2γ1γ3〈c†iγ4σciγ3σ′〉c†iγ2σ′ciγ1σ

)

. (1)

Note that this expression includes spin-flip terms due to
spin-orbit coupling. The matrix elements Uγ1γ2γ3γ4 obvi-
ously depend on the atomic basis, but the resolution of
the full Hartree-Fock Hamiltonian (namely without any
approximation) must lead to the same results whatever
the basis. However, the use of CH is quite attractive for
discussing the OPA since in this basis the three and four
orbital matrix elements of the electron-electron interaction
are proportional to the Racah parameter B only [6]. More-
over in CH the different values of the two orbital matrix el-
ements Uλµλµ and Uλµµλ (λ �= µ) only differ by terms pro-
portional to B. The average values: (1/4)

∑

µ,µ�=λ Uλµλµ

and (1/4)
∑

µ,µ�=λ Uλµµλ are independent of λ and are
given by U = A−B +C and J = 5B/2+C [12] while the
one orbital terms Uλλλλ are all equal to U +2J . This leads
us to define (U, J, B) as a new set of parameters. The two
orbital terms Uλµλµ (resp. Uλµµλ) can then be expressed
in terms of U and B (resp. J and B) while the three and
four orbital terms are proportional to B only. As already
stated, this is no longer true in the SH basis.

When B is neglected in the above Hamiltonian HF1,
we recover the model (hereafter referred to as HF2) that
has been used in our previous studies [13] (Uλµλµ = U and
Uλµµλ = J for any pair of different orbitals λ and µ and
no three and four orbital terms) in which spin-flip terms
were omitted since the spin-orbit coupling interaction was
not taken into account. Starting from this Hamiltonian,
keeping only the diagonal terms and replacing each or-
bital population of a given spin by its average value, leads

to a Stoner-like Hamiltonian (called HF3) that we have
also investigated since it has widely been used in the lit-
erature [14]:

HHF3
int =

∑

iλ,σ

(UeffNi − σIMi/2)c†iλσciλσ. (2)

In this Hamiltonian I = (U +6J)/5 is the Stoner parame-
ter while Ni and Mi are, respectively, the total charge and
moment on site i. Ueff is equal to (9U − 2J)/10 if one de-
rives HF3 from HF2 as explained above. Since here we are
interested in systems with geometrically equivalent atoms
(i.e., Ni = N, Mi = M) we can choose the energy zero in
all Hamiltonians as ε0 + UeffN so that the first term in
equation (2) disappears from the total Hamiltonian HF3.
The spin magnetism is governed by the Stoner parame-
ter I that will be kept constant in all our calculations and
determined so that it reproduces the experimental value
of the spin moment in the bulk phase.

From the above discussion it is clear that HF2 differs
from HF1 by terms proportional to B, this is also true
for HF3 as far as this Hamiltonian is justified. Eriksson
et al. [4] have proposed to introduce an OPA term to ac-
count for this difference. This term is written in meanfield
∆EOP = − 1

2B
∑

i〈Li〉2 which reduces to − 1
2B

∑

i〈Liz〉2
when the spin and orbital moments have the same quanti-
zation axis z (which is strictly verified along high symme-
try directions). The corresponding Hamiltonian is then:

HOP = −B〈Lz〉
∑

iγγ′
[Lz]γγ′c†iγσciγ′σ (3)

where [Lz]γγ′ are the matrix elements of the local orbital
moment operator Liz . [Lz]γγ′ is spin independent and di-
agonal in the SH basis when the orbital momentum quan-
tization axis of the SH orbitals is rotated so that it co-
incides with the spin quantization axis. This is no longer
true if the SH orbital momentum axis is along a crystallo-
graphic axis which is not parallel to the spin quantization
axis, or when [Lz]γγ′ is expressed in the CH basis. Fi-
nally the last term of our Hamiltonian takes into account
the intra-atomic spin-orbit interactions determined by the
spin-orbit coupling parameter ξ.

A monatomic wire of a transition metal is a handy sys-
tem to compare the results given by the various models de-
scribed above. The parameters of the model are chosen to
mimic Fe which is assumed to have N = 7 valence d elec-
trons per atom in the bulk as well as in the wire. The hop-
ping integrals ddσ, ddπ and ddδ are chosen proportional to
(–6, 4, –1) and decrease with the interatomic distance ac-
cording to a R−5 law. The numerical value of ddσ is fitted
to the bulk d band width of Fe (Wd = 6 eV) which leads
to ddσ = −0.749 eV at the bulk nearest neighbor distance
(d = 4.7 a.u.). First and second nearest neighbor hop-
ping integrals have been taken into account. The Stoner
parameter is I = 0.67 eV. The spin-orbit coupling param-
eter is taken from a previous work (ξ = 0.06 eV) [15]. It is
well-known that the parameter U is strongly screened in
metals. In particular in a recent paper Solovyev [16] has
shown that this parameter is almost independent of the
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Fig. 1. 〈Lz〉 and MAE as a function of B/J from HF1 (full
line) and HF2+OPA (HF3+OPA results are undistinguishable
from the HF2+OPA (dashed line) ones) for a saturated mag-
netic Fe monatomic wire (d = 4.7 a.u.).

bare interaction. From Figure 1 of this reference it can be
deduced that U � J in Fe [17]. In that case I = 7J/5 so
that U = J = 0.48 eV, a numerical value in good agree-
ment with that given by Solovyev. Finally, as in previous
works [16], we have taken B = 0.14J [12].

The calculations are carried out in k-space by diagonal-
izing the 10× 10 Hamiltonian matrix using a sampling of
200k points and a Fermi broadening (1 meV) of the eigen-
values. We thus obtained a numerical accuracy of 0.1 meV
on the total energy and 10−3 µB on the spin and orbital
moments. Self-consistency is achieved by using an itera-
tive procedure. Depending on the input density matrix
several solutions sometimes exist. In the following, only
the minimal energy solution is reported.

When applied to bulk Fe, the complete HF decoupling
yields 〈2Sz〉 = 2.12 µB and 〈Lz〉 = 0.08 µB when B = 0
(HF2 model), and 〈2Sz〉 = 2.11 µB and 〈Lz〉 = 0.12 µB

when B is taken into account (HF1 model). Then, we have
compared the results derived from the five models (HF2
and HF3 with and without HOP , and HF1) for the spin
and orbital moments with magnetizations along the wire
(θ = 0) and perpendicular to it (θ = π/2) and the corre-
sponding MAE, i.e., ∆E = Etot(θ = π/2) − Etot(θ = 0)
where Etot is the total energy per atom of the system.
Two interatomic distances have been considered: the bulk
interatomic distance at which the spin magnetization is
saturated and a shorter distance (4.25 a.u.) correspond-
ing to unsaturated spin moments. The results are given in
Table 1.

Let us first discuss the wire at the bulk interatomic
distance. All models agree to predict saturated spin mag-
netization, i.e., the spin magnetic moment is 3 µB to less
than a few 10−3 µB. As a consequence the effective atomic
orbital levels with down spin are identical in HF2 and HF3
models since U = J . This is no longer true for the up spin
orbitals for which the atomic levels are orbital dependent
with HF2 and not with HF3. However the average atomic
level is the same in both models. Therefore the orbital mo-
ment, which arises only from the spin down band, the spin

Table 1. The spin (〈2Sz〉) and orbital (〈Lz〉) magnetic mo-
ments (in µB per atom) for a monatomic Fe wire and two
magnetization orientations (parallel (θ = 0) and perpendicular
(θ = π/2) to the wire) and the corresponding magnetocrys-
talline anisotropy MAE (Etot(π/2)−Etot(0)) in meV per atom
for two interatomic distances.

HF1 HF2 HF2 HF3 HF3

OPA OPA

d = 4.7 a.u.

〈2Sz(0)〉 3 3 3 3 3

〈2Sz(π/2)〉 3 3 3 3 3

〈Lz(0)〉 1.45 0.37 1.31 0.37 1.31

〈Lz(π/2)〉 0.49 0.25 0.61 0.25 0.60

MAE 23.4 0.7 22.3 0.6 22.3

d = 4.25 a.u.

〈2Sz(0)〉 1.51 1.24 1.23 0.94 0.78

〈2Sz(π/2)〉 1.51 1.23 1.24 0.93 0.94

〈Lz(0)〉 0.33 0.19 0.39 0.24 1.07

〈Lz(π/2)〉 0.21 0.10 0.18 0.08 0.15

MAE –0.7 -0.3 1.5 0.0 6.2

up band being filled, is almost identical in both models
similarly to the total energy (see Tab. 1). As expected the
orbital moments for both magnetization orientations and
the associated MAE, even though reinforced compared to
the bulk ones, are largely underestimated by the HF2 and
HF3 models with B = 0 compared to those predicted by
the complete HF decoupling (HF1). When the OPA term
is added to the HF2 and HF3 Hamiltonians, the results
given by the latter models become in fair agreement with
those obtained from HF1 for the orbital moment while the
MAE is well reproduced.

The above trends completely change when the inter-
atomic distance is shortened to 4.25 a.u.. It is first seen
that the spin moment depends on the model. In this re-
spect the HF2 model is much better than the HF3 one.
Moreover, taking into account the OPA term leads to an
increase of the orbital moments for both magnetization
orientations which are rather close to the HF1 results for
HF2 but not for HF3.

To summarize this discussion we can state that the
OPA is rather good for saturated spin magnetization while
for the unsaturated case it leads to results depending criti-
cally on the approximations made concerning the electron-
electron interaction Hamiltonian. In order to verify that
the good performance of the OPA for the saturated spin
magnetization is not due to the particular value of B, we
have studied the variation of 〈Lz〉 at θ = 0 and θ = π/2
and the associated MAE as a function of the ratio B/J .
The results (Fig. 1) show that the OPA gives the right
trends on the full domain of B/J values that we have in-
vestigated. In particular an abrupt variation of 〈Lz〉 at
θ = 0 occurs around a critical value of B/J � 0.09 above
which the upper δ band (the corresponding eigenfunctions
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Fig. 2. HF1 (top) and HF2+OPA (bottom) band structure
(referred to the Fermi level) for a magnetic Fe monatomic wire
(d = 4.7 a.u.) with a magnetization parallel (θ = 0) and per-
pendicular (θ = π/2) to the wire. All results are obtained for
U/J = 1 and B = 0.14J save for the dotted band structure of
the top right panel obtained for U/J = 1.34 and B = 0.14J .
Each curve is labelled by the main character of its eigenfunc-
tion, i.e., denoted by the m value for θ = 0 and the CH for
θ = π/2.

being mostly linear combinations of SH with |m| = 2) of
minority spin becomes empty.

Even if the OPA works reasonably in the saturated
spin magnetization case for determining 〈Lz〉 and the
MAE, this does not mean that it reproduces the band
structure correctly. Let us first note that for θ = 0, the
eigenfunctions have a largely dominating single SH char-
acter while at θ = π/2 they are almost pure single CH
orbitals. The band structures corresponding to HF1 and
HF2+OPA are drawn in Figure 2 (the band structure of
HF3+OPA is close to that of HF2+OPA). At first sight
they look quite similar. However a closer examination re-
veals some differences. Let us first comment on the ma-
jority spin bands at θ = 0. While the splittings of the
|m| = 2 (δ) and |m| = 1 (π) bands are respectively given
by 2ξ and ξ with the HF1 model, they become 2ξ−4B〈Lz〉
and ξ − 2B〈Lz〉 with both the HF2 and HF3 models in-
cuding OPA, respectively. In addition the m character of
the bands is reversed, i.e., the m = 2(1) band is above the
m = −2(−1) band in the HF1 while it is the opposite with
the HF2 and HF3 models including OPA. This inversion
does not occur in the minority spin bands and the split-

1 2 3 4

U/J

0

1

2

<
L

z>
 (

µ B
)

1 2 3 4

U/J

-40
-35
-30
-25
-20
-15
-10
-5
0
5
10
15
20
25
30
35
40

M
A

E
 (

m
eV

)θ=0

θ=π/2

Fig. 3. 〈Lz〉 and MAE as a function of U/J from HF1 for a
magnetic Fe monatomic wire (d = 4.7 a.u.).

tings of the δ and π bands are not exactly the same with
the HF2+OPA and HF3+OPA as with the HF1 models.
At θ = π/2 all models agree that for U = J there are
almost no band splittings and that the removals of degen-
eracy around the midpoint between Γ and X are more
pronounced in the minority bands than in the majority
ones.

Finally it is interesting to study the variation of 〈Lz〉
and of the MAE with the HF1 model when the ratio U/J
is varied by keeping the Stoner parameter fixed. Indeed
this ratio is not perfectly known. The results are shown
in Figure 3. Abrupt variations of 〈Lz〉 are observed at
U/J � 1.34 when θ = π/2 and U/J � 3.25 when θ =
0. They correspond respectively to the occurrence of a
splitting of the δ bands (see Fig. 2) and to the complete
filling of the lowest δ band of minority spin. These abrupt
changes of 〈Lz〉 are associated with a change of sign of the
variation of the MAE as a function of U/J .

In conclusion we have studied orbital polarization
effects for a Fe monatomic wire with various HF
Hamiltonians in a tight-binding scheme: a full HF Hamil-
tonian (HF1) including all the Coulomb interaction matrix
elements, a simplified one (HF2) neglecting the Racah pa-
rameter B, and finally a Stoner-like Hamiltonian (HF3).
OPA has then been reintroduced in HF2 and HF3 as pro-
posed by Eriksson et al. [4]. With HF1 we find that very
large values of L and MAE are possible in agreement with
existing experiments. The same trends are obtained by
adding the OPA to simplified Hamiltonians when the spin
moment is saturated, however noticeable differences ap-
pear in the band structure since some splitting and band
characters are wrongly reproduced. This fair agreement
strongly deteriorates when dealing with an unsaturated
system, especially with the Stoner-like model. It is thus of
prime importance to use the HF1 model for the study of
low dimensional systems with much more complex geome-
tries (surfaces, clusters, break junctions), in a realistic s,
p and d basis set, or to implement it in ab-initio codes.
Indeed from our results large orbital moment and giant
MAE and anisotropy of magneto-resistance in low dimen-
sional systems such as break junctions are expected [18].
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B 73, 104427 (2006)
4. O. Eriksson, M.S.S. Brooks, B. Johansson, Phys. Rev. B

41, 9087 (1990)
5. M. Komelj, C. Ederer, J.W. Davenport, M. Fähnle, Phys.
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